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Review 

Cognitive flexibility in and out of the laboratory: task 
switching, sustained attention, and mind wandering
Yunji Lee and Eric H Schumacher 

Our daily lives require cognitive flexibility to optimize our 
behavior in changing environments. Cognitive psychology has 
studied this topic in a variety of ways — from task switching to 
studies of sustained attention and attention lapses in simple 
laboratory and more complex tasks. The current paper 
integrates these topics and briefly reviews the neuroscience 
underlying the external and internal attentional states 
responsible for cognitive flexibility. Functional connectivity 
between brain networks associated with cognitive control (e.g. 
dorsal attention, frontoparietal, and ventral attention networks) 
and mind wandering (e.g. default mode network) play an 
important role in cognitive flexibility. The antagonistic 
relationship between these and other attentional networks 
mediate task switching and task engagement. Here, we provide 
a summary of recent findings on how these dynamics between 
brain networks are associated with flexible cognitive control 
between tasks and within a task.
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Cognitive flexibility, the ability to switch tasks and ad
just one’s behavior according to a changing environment, 
updating goals, other internal states, etc., is one of the 
core functions of cognitive control [19,53–55]. The pre
frontal cortex (PFC) plays a key role in cognitive control 
[53]. Implementation of cognitive control closely de
pends on the dynamics and the functional organization 
of the brain networks connecting PFC regions with other 

regions throughout the brain [26,52]. Four networks 
especially important to cognitive control and flexibility 
are the frontoparietal network (FPN), dorsal attention 
network (DAN), ventral attention network (VAN), and 
default mode network (DMN) [46,73].

Our daily lives require cognitive flexibility to shift at
tention between multiple tasks, disengage from no- 
longer-relevant tasks, refocus on a task after losing focus, 
and otherwise flexibly adjust our behavior (Figure 1). 
We typically experience performance decrements when 
we switch between tasks. That is, our performance may 
decrease, and/or our ability to get back ‘on task’ may 
falter [7,13,29,39,43,56].

One key idea is that, when humans perform goal-di
rected behavior, we activate a knowledge representation 
(i.e. a task set) that includes attentional, memory, mo
toric, goal, motivational, and perceptual features relevant 
to the current task [5,32,33,62,64,65]. These re
presentations are encoded into episodic long-term 
memory [27,34–36]. As our tasks change, different task 
sets become relevant and may be activated and compete 
with each other [2,37,48]. The key to this flexible control 
is how we adjust or alter these representations based on 
the current task demands.

Cognitive flexibility has often been studied in the la
boratory with task switching procedures that require 
people to switch between two or more tasks (Figure 2). 
Research shows that responses are generally slower and 
less accurate when subjects switch to a new task com
pared with when they perform the same task on separate 
trials [39,42,43,56]. This switch cost has been interpreted 
as an index of the difficulty of flexibly adapting to our 
environment. It may reflect the cognitive control pro
cesses for activating, reconfiguring, or otherwise dealing 
with interference in the new task set [31,50,51,62] or the 
automatic competition among task sets [2,48].

Three experimental procedures have often been used by 
cognitive psychologists to investigate task switching 
(Figure 2; for a review, see Ref. [39]). In the predictable 
task switching procedure, also known as the alternating- 
runs procedure, tasks switch after a predictable sequence 
(e.g. every two trials; AABB sequence; [62]). In the task 
cueing procedure, cues are presented before the task 
stimuli to indicate the currently required task [50]. In 
this procedure, the interval between the cue and target 
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stimulus can vary, and switch costs decrease with longer 
cue-stimulus intervals (CSI) [41,51]. Voluntary task se
lection asks participants to decide themselves on each 
trial which task to perform [3,30]. In all procedures, 
performance on task switch trials is compared with task 
repetition trials and reveals the costs of switching in 
general.

While the behavioral mechanisms of task switching in 
the laboratory are well reviewed in the existing literature 
[39,42], the neural mechanisms are not fully understood. 
A meta-analysis of neuroimaging studies on task 
switching procedures reveals common and task-specific 
brain activations within the FPN and attentional net
works [40], consistent with the major role in cognitive 

Figure 1  
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Examples of ‘task switching’ outside the laboratory. We are often performing one important task (like working on a project on our laptop) when another 
important task (a text or other message on our phone) interrupts us, and we flexibly adapt our thoughts and behavior (i.e. switch) to the new task). In 
other situations, it may be internal factors (e.g. boredom or hunger) that distract us and capture our attention.  

Figure 2  
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Examples of common procedures used to study task switching in the laboratory. In the predictable switch procedure, subject knows when the task 
switch will occur. In the task cueing procedure, subjects get a cue indicating the upcoming task. The task stimulus follows a CSI. In the voluntary task 
selection procedure, subjects perform one task until they decide to switch to the other. These laboratory tasks capture some aspects of task switching 
outside the laboratory.  
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control and task engagement of FPN as flexible hubs of 
global brain processing [15] and posterior parietal cortex 
(a region in the DAN) as common hub of control for 
attentional shifting [28]. Specifically, anterior cingulate 
cortex (a region in the VAN) may configure the priorities 
of the tasks subjects are performing and dorsolateral 
prefrontal cortex (a region in FPN) may modulate at
tention to control the interference from previously acti
vated task sets [10,38,61]. The activation of FPN and 
DAN regions during task switching was confirmed in a 
more recent meta-analysis that specifically identified left 
inferior frontal junction (IFJ; a region in the FPN), in
traparietal sulcus (a region in the DAN), pre
supplementary motor area (a region in the DAN) and 
precuneus (a region on the DMN) were selectively as
sociated with task switching [76]. These brain regions 
also drive the creation of task sets in task-relevant brain 
regions (e.g. fusiform face area for face stimuli) that may 
guide attention to perceptual features [14].

Additionally, recent neuroimaging studies have investigated 
the relationship between brain and cognitive flexibility 
using a variety of new methods. Qiao et al. [58] used 
functional magnetic resonance imaging (fMRI) and re
presentational similarity analysis (RSA) to investigate cog
nitive flexibility when subjects switched between 
identifying faces and buildings. This technique measures 
the similarity of activation patterns across the cortex in dif
ferent experimental conditions. Qiao et al. found that frontal 
and parietal brain regions for task repeats were more similar 
than task switches and the amount of similarity predicted 
task performance. This suggests that these regions flexibly 
recode changing task sets in a trial-by-trial manner. Another 
fMRI study using brain signal variability observed that the 
individuals with higher trial-to-trial variations in brain acti
vation in the IFJ showed smaller switching costs, which 
reflects effective task switching performance [4].

The DAN, FPN, and VAN are involved in processing 
external stimuli and producing goal-directed behavior 
[15,17,74]. Another network, the DMN, may also be 
involved in these processes. The DMN includes the 
medial temporal lobe, medial PFC, and posterior cin
gulate cortex. It is usually more active when our atten
tion is internally focused and less active when we are 
engaged in task [11,25,60].

Several studies suggest that DMN activity and the dy
namic relationship between FPN and DMN are closely 
associated with cognitive control and flexibility 
[20,49,66,72]. Douw et al. [20] showed that at rest and 
when performing a version of the Stroop task, in
traindividual variability between FPN and DMN was 
significantly correlated with cognitive control and flex
ibility. That is, higher variability in the functional con
nectivity between the two networks during the Stroop 
task predicted greater cognitive control and flexibility, 

and higher variability between these two networks 
during rest was related to poorer cognitive control and 
flexibility. These findings demonstrate that the re
lationship between DMN and other networks may be an 
important aspect of cognitive flexibility.

Interestingly, additional evidence suggests that the 
DMN may be directly involved in task switching. 
Crittenden et al. [18] reported increased DMN activity 
during task switching. They suggested that DMN may 
be involved in the release from sustained attention to 
the current task to allow reconfiguring the new task sets. 
Another study replicated this finding and showed that 
DMN activated during cross-domain switching (e.g. 
faces to buildings) but not within-domain switches [67]
— so the complexity of the switch may be an important 
aspect for DMN contribution to cognitive flexibility.

Wen et al. [75•] provide additional support for this idea 
by using a more real-world situation in their experiment. 
They had subjects perform task sequences involving 
everyday locations (e.g. tasks done in the kitchen, like 
cooking a meal). They performed RSA to examine the 
neural presentation of the tasks and the steps in each 
task. They found the neural activation patterns in DMN 
was different between tasks (e.g. make a stew, bake 
cupcakes) and activity in FPN was different for each 
step and item within a task (e.g. take food from fridge, 
wash vegetables). These results suggest that DMN may 
represent broad task context and FPN may represent 
specific details of each task sequence. Cognitive flex
ibility requires both broad context and step-level in
formation. Flexible cognitive control may depend on the 
balance between DMN and FPN, which modulates our 
focus on broad or specific task requirements.

Wen et al. [75] point to the importance of investigating 
these issues with tasks that have ecological validity. Related 
to this point, our group has shown how regions of the VAN 
and DMN are related to attention and engagement while 
subjects process complex audio-visual narratives (e.g. film 
clips) [6,8,9]. It may seem strange to call Hollywood films 
realistic, but they may be when compared with most la
boratory work on cognitive flexibility, which often involves 
switching tasks between simple stimuli and responses and 
externally defined tasks (e.g. press the left button for even 
numbers and right for odd). Participants must comprehend 
the narrative of the film from the stream of incoming audio- 
visual sensory information. The dynamics of these visual 
and auditory features mimics as aspect of real-world pro
cessing where complex information unfolds over time. Film 
viewing elicits task engagement, attention switching, sustain 
attention, narrative comprehension, and disengagement 
from external tasks (for a review, see Ref. [7•]).

Using a film viewing task, our group found that in
creased narrative suspense leads to increased activity in 
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the VAN and reduced activity in the DMN ([6,9], under 
review). Somewhat inconsistent with our findings, Song 
et al.s [68] reported DMN activity increased during 
engaging moments in film narratives, particularly those 
with emotional content. This DMN activity was more 
synchronized across individuals during these engaging 
moments, and functional connectivity between the 
DMN and FPN was positively correlated with engage
ment. A recent study by Nanni-Zepeda et al. [57] had 
participants watch emotionally negative films and as
sessed their engagement during viewing. They found 
that increased DMN activity correlated with emotional 
engagement, while disengagement was indicated by si
multaneous activation of the FPN and DMN. Thus, 
DMN activity and functional connectivity between 
networks during task engagement may vary according to 
the content, decreasing with suspense but increasing 
with emotional arousal. More work will be necessary to 
clarify these complex relationships.

Despite these complexities, film viewing, like real-world 
situations often require us to flexibility modulate our 
attention states to our current external task (e.g. 
watching a movie or working on a work project) and 
other competing internally motivated thoughts and re
presentations (i.e. task engagement and mind wan
dering; Figure 1). Task switching occurs in response to 
external demand change, while our ability to sustain our 
attention to the current task fluctuates from moment to 
moment due to a range of factors, such as reduced mo
tivation, boredom, executive failure, or focus on internal 
thoughts. This inability to sustain engagement with the 
external task is often referred to as mind wandering. It is 
defined as a spontaneous thought more deliberate than 
dreaming but less deliberate than goal-directed 
thinking [13].

Our group has recently investigated the behavioral and 
neural characteristics of mind wandering. Godwin et al. 
[29] demonstrated that there are different types of in
attentional states. In that experiment, we examined re
action time (RT) variability and neural correlates within 
and between different attentional states during the 
performance of a simple tapping task. Subjects could 
either be (1) on-task; (2) experiencing task-related in
terference (i.e. thinking of other aspects of the task); (3) 
off-task (i.e. mind wandering); or (4) experiencing in
attention (i.e. not thinking about anything in particular). 
Behavioral results showed that the RT variability was 
largest when subjects were inattentive and smallest 
when participants were on-task. Individuals exhibit a 
spectrum of on- and off-task, and our cognitive system 
may transit between these attentional states as we 
behave.

Like sustained attention and mind wandering (for the 
relationship between sustained attention and mind 

wandering, see Refs. [24,69]), activity within and be
tween brain networks spontaneously fluctuates from 
moment to moment. As described previously, DMN is 
often less active when we are engaged in a cognitive task 
and more active during mind wandering and off-task 
states [7,11,12,59,60,72]. Furthermore, the DAN, which 
mediates top-down guided selective attention and motor 
responses to external stimuli in the environment [16,74], 
is often negatively correlated with DMN during rest 
[25,47,78] and task [1,59,71]. The antagonistic relation
ship between DMN and DAN has been broadly found 
in a variety of task fMRI studies [59]. A stronger antic
orrelation between these two networks has been asso
ciated with enhanced sustained attention [44,45,63,70].

Our group has shown that activity in the DMN and the 
FPN and DAN (which are sometimes grouped into the 
task-positive network [TPN]) fluctuate over roughly 20 s 
cycles and are negatively correlated at rest (Figure 3b). 
We have called these dynamic changes in activity quasi- 
periodic patterns (QPPs) [47,77,78]. Additionally, we’ve 
demonstrated that subjects are faster to notice targets in 
a sustained attention task when the targets appear when 
the TPN is more active than the DMN [70]. This 
finding suggests that fluctuating patterns of activity in 
these networks may mediate attentional control and task 
engagement.

Researchers have also used behavioral variability as an 
index of on- and off-task processing. For example, 
Esterman et al. had subjects perform a visual recognition 
task in which stimuli (e.g. face, scenes, etc.) became 
clearer (e.g. faded in) as the trial progressed. Across 
several studies, they identified moments of high RT 
variability as ‘out-of-the-zone’ performance and mo
ments of low variability as moments of ‘in-the-zone’ 
performance [22–24,45]. By employing a gradual onset 
continuous performance tasks, Esterman et al. observed 
higher DMN activation ‘in the zone’ and increased DAN 
activity in ‘out of zone’ performance. Likewise, Kucyi 
et al. found the same pattern when subjects performed a 
finger tapping task, in which they pressed a key to a 
continuous beat. These results demonstrate antagonistic 
relationship between the two brain networks and their 
anticorrelation is closely related to the task engagement 
states.

Esterman et al. report a negative relationship between 
DMN and DAN during in-the-zone and out-of-the-zone 
performance [22,23,45]. We and our colleagues report a 
fluctuating pattern of anticorrelation between these 
networks at rest and during the performance of attention 
and working memory tasks [1,47,70,78,77].

We have recently investigated the relationship between 
activity in these two networks and cognitive engage
ment. Subjects performed a serial tapping task (from 
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Ref. [29]). We identified the blocks of lowest RT 
variability (in-the-zone) and highest (out-of-the-zone). 
We then investigated how these different cognitive 
states related to QPP activity. We showed that the QPPs 
for DAN and DMN were anticorrelated for both zone 
states (Figure 3c). The FPN, however, was negatively 
correlated with DMN when subjects were in the zone 
but positively correlated when out of the zone. The QPP 
for VAN and DMN showed the reverse pattern — po
sitively correlated to the DMN when in and negatively 
correlated when out-of-the-zone [66]. Taken together, 
task engagement states were related to the antagonistic 
relationship between DMN and DAN, and this re
lationship may be modulated by FPN. This result is 
consistent with the previous studies [22,23,45] and 
supports the idea that sustained attention relies on the 
balance between activity in DMN and DAN [22].

In this paper, we briefly review literature indicating that 
cognitive flexibility depends on external demands (e.g. 
task switching) and attentional state changes (e.g. task 

engagement) and that the neural correlates associated 
with behavioral flexibility involve the DAN, DMN, 
FPN, and VAN. Flexible cognitive control is associated 
with the dynamic pattern of activity between these brain 
networks rather than activation of a single region. The 
functional connectivity between brain networks asso
ciated with cognitive control (e.g. DAN, FPN, and VAN) 
and mind wandering (e.g. DMN) are closely related to 
cognitive flexibility between tasks. Our internal fluc
tuation in sustained attention may relate to on-task and 
off-task performance. The anticorrelation between 
DMN and attention network (e.g. DAN) plays a key role 
in task engagement —– perhaps mediating the complex 
relationship between maintaining a task set and 
switching between sets [21].

Despite the obvious differences between tasks often 
used in the laboratory to study task switching and mind 
wandering (e.g. Stroop and serial tapping tasks) and 
more complex tasks (e.g. watching movies or cooking), 
the same patterns of activity across the same brain 

Figure 3  
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(a) QPPs identified in brain networks from Schafer et al., 2018. The DMN, DAN, FPN, and VAN are shown. Areas within the DAN, FPN, and VAN are 
sometimes identified as the TPN. (b) The basic QPP algorithm uses a sliding window to identify periodic patterns in a voxel, region, or network. It uses 
the results to create a template and then uses a sliding window to identify the template in the data. The algorithm iterates and updates the template. 
The result is a QPP, which is typically a fluctuating pattern of network activity over about 20 s. (c) Results from Seeburger et al. [66] that indicate a 
change in the relationship between DMN and FPCN and VAN during in-the-zone and out-of-the-zone performance on a metronome tapping task. 
DMN and FPCN are anticorrelated during engaged performance and correlated when subjects are less engaged in the task. The VAN shows the 
opposite pattern.  
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networks seem to emerge. This suggests a close re
lationship between the cognitive control processes in
volved and cognitive flexibility shown in these disparate 
domains. It highlights the ecological validity of the 
simple experimental tasks and offers an avenue for fu
ture research with more complex tasks.
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